资源类型

期刊论文 293

年份

2024 1

2023 41

2022 22

2021 20

2020 15

2019 14

2018 22

2017 39

2016 15

2015 18

2014 13

2013 8

2012 12

2011 8

2010 7

2009 7

2008 7

2007 5

2006 2

2005 2

展开 ︾

关键词

固体废物 4

资源化利用 4

分类 2

厌氧消化 2

废水 2

循环经济 2

政策建议 2

气化 2

生物柴油 2

7种气态污染物 1

ITO 1

β-粒子的横向振动 1

“无废城市” 1

“无废社会” 1

“无废雄安新区” 1

世界经济全 1

中国 1

二氧化碳矿化 1

亚铁氰化铜 1

展开 ︾

检索范围:

排序: 展示方式:

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 117-130 doi: 10.1007/s11709-021-0788-7

摘要: Proven research output on the behavior of structures made of waste copper slag concrete can improve its utilization in the construction industry and thereby help to develop a sustainable built environment. Although numerous studies on waste copper slag concrete can be found in the published literature, no research has focused on the structural application of this type of concrete. In particular, the variability in the strength properties of waste copper slag concrete, which is required for various structural applications, such as limit state design formulation, reliability-based structural analysis, etc., has so far not attracted the attention of researchers. This paper quantifies the uncertainty associated with the compressive-, flexural- and split tensile strength of hardened concrete with different dosages of waste copper slag as fine aggregate. Best-fit probability distribution models are proposed based on statistical analyses of strength data generated from laboratory experiments. In addition, the paper presents a reliability-based seismic risk assessment of a typical waste copper slag incorporated reinforced concrete framed building, considering the proposed distribution model. The results show that waste copper slag can be safely used for seismic resistant structures as it results in an identical probability of failure and dispersion in the drift demand when compared with a conventional concrete building made of natural sand.

关键词: waste copper slag     quantification of variability     goodness-of-fit test     seismic risk assessment     PSDM    

Utilization of alkali-activated copper slag as binder in concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 773-780 doi: 10.1007/s11709-021-0722-z

摘要: This study was focused on developing concrete using alkali-activated copper slag (AACS) as a binder. The properties of alkali-activated copper slag concrete (AACSC) were compared with portland cement concrete (PCC). Different AACSC mixes were prepared with varying Na2O dosage (6% and 8% of the binder by weight) and curing methods. Hydration products in AACSC were retrieved using Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) techniques. The test results indicate that the workability of AACSC was lesser than that of PCC. The AACSC mix with 6% Na2O dosage has exhibited similar mechanical properties as that of PCC. The mechanical properties of AACSC were higher than PCC when 8% of Na2O dosage was used. Heat curing was effective to upgrade the strength properties of AACSC at an early age of curing, but at a later age mechanical properties of ambient cured and heat-cured AACSC were comparable. The hydration products of AACSC were not identified in XRD patterns, whereas, in FTIR spectra of AACSC some alkali-activated reaction products were reflected. The AACSC mixes were found to be more sustainable than PCC. It has been concluded that AACSC can be produced similarly to that of PCC and ambient curing is sufficient.

关键词: binder     concrete     mechanical properties     mineralogy     workability    

Copper fractal growth during recycling from waste printed circuit boards by slurry electrolysis

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1405-7

摘要:

• Copper fractal growth was observed during WPCBs recycling by slurry electrolysis.

关键词: Dendritic copper     Fractal growth     WPCBs     Slurry electrolysis    

Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis

Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0997-4

摘要: Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and factors that affect copper recovery rate and purity, mainly CuSO ·5H O concentration, NaCl concentration, H SO concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase of CuSO ·5H O NaCl, H SO and current density and then decreased with further increasing these conditions. NaCl, H SO and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO ·5H O. When the concentration of CuSO ·5H O, NaCl and H SO was respectively 90, 40 and 118 g/L and current density was 80 mA/cm , copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.

关键词: Waste printed circuit boards (WPCBs)     Copper     Recovery rate     Purity     Electrolysis    

A critical review on the recycling of copper and precious metals from waste printed circuit boards using

Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0995-6

摘要: Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments, which can cause serious health problems if effective off-gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.

关键词: Waste PCBs     Precious metals     Hydrometallurgy     Recycling     Leaching     Recovery    

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 308-316 doi: 10.1007/s11705-016-1587-x

摘要: Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia-based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.

关键词: copper recovery     electronic waste     end-of-life products     selective leaching     electrodeposition    

Cu/Cr co-stabilization mechanisms in a simulated AlO-FeO-CrO-CuO waste system

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1408-4

摘要:

• Cu and Cr can be mostly incorporated into CuFexAlyCr2xyO4 with a spinel structure.

关键词: Spinel structure     Copper     Chromium     Co-stabilization     Thermal treatment    

Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb

Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 192-200 doi: 10.1007/s11783-014-0719-0

摘要: Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast furnace slag-based cementitious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Continuous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C-S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.

关键词: municipal solid waste incineration (MSWI) fly ash     blast furnace slag     leaching behavior     Cr     Pb    

Effect of fly ash and slag on concrete: Properties and emission analyses

Vivian W. Y. TAM, Khoa N. LE, Ana Catarina Jorge EVANGELISTA, Anthony BUTERA, Cuong N. N. TRAN, Ashraf TEARA

《工程管理前沿(英文)》 2019年 第6卷 第3期   页码 395-405 doi: 10.1007/s42524-019-0019-2

摘要: Recycled concrete is a material with the potential to create a sustainable construction industry. However, recycled concrete presents heterogeneous properties, thereby reducing its applications for some structural purposes and enhancing its application in pavements. This paper provides an insight into a solution in the deformation control for recycled concrete by adding supplementary cementitious materials fly ash and blast furnace slag. Results of this study indicated that the 50% fly ash replacement of Portland cement increased the rupture modulus of the recycled concrete. Conversely, a mixture with over 50% cement replacement by either fly ash or slag or a combination of both exhibited detrimental effect on the compressive strength, rupture modulus, and drying shrinkage. The combined analysis of environmental impacts and mechanical properties of recycled concrete demonstrated the possibility of optimizing the selection of recycled concrete because the best scenario in this study was obtained with the concrete mixture M8 (50% of fly ash+ 100% recycled coarse aggregate).

关键词: recycled aggregate     recycled concrete     fly ash and slag    

Performance assessment of Alccofine with silica fume, fly ash and slag for development of high strength

Shivang D. JAYSWAL; Mahesh MUNGULE

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 576-588 doi: 10.1007/s11709-022-0826-0

摘要: Previous studies on concrete have identified silica fume (SF) as the most effective supplementary material, whereas fly ash (FA) and slag have been identified as economical materials with long term strength potential. Development of blended cement mortar referred to as blended mortar (BM) requires similar assessment. The present study explores the application of Alccofine (AL) as supplementary material and compares its performance with conventional materials namely SF, FA and ground granulated blast furnace slag (GGBS). The mortar specimens with binder to fine-aggregates (b/f ) ratio of 1:2 are prepared at water to binder (w/b) ratios of 0.4 and 0.35. The strength values and stress-strain curve for control and BM specimens are obtained at 7, 28, 56, and 90 d curing periods. The assessment based on strength activity index, k-value method and strength estimation model confirms that AL, despite lower pozzolanic activity, contributes to strength gain, due to reduced dilution effect. Assessment of stress-strain curves suggests that the effect of w/b ratio is more dominant on the elastic modulus of BM specimens than on control specimens. The observations from the study identify enhanced strength gain, improved elastic modulus and higher energy absorption as key contributions of AL making it a potential supplementary material.

关键词: Alccofine     high strength mortar     efficiency factor     dilution effect    

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 236-242 doi: 10.1007/s11783-010-0218-8

摘要: Copper and zinc interaction on clearance from water and distribution in different tissues was investigated for the freshwater mussel, , under laboratory conditions. Clearance rate of Cu or Zn from water was highly dependent on exposure concentration. Interaction effect was most evident at 300 μg·L Cu exposure and depressed the Zn clearance rate significantly ( <0.05). However, the presence of 100 μg·L and 300 μg·L Zn hardly affected the Cu clearance rate. The 300 μg·L Cu presence enhanced Cu accumulation in each tissue most significantly ( <0.01), but caused Zn content to decrease in the gills by 62% ( <0.05), viscera by 49% ( <0.05) and foot by 31% ( <0.05), and increase in the mantle by 97% ( <0.05) and the muscles by 243% ( <0.05) for different Zn exposure treatments. The response of metal accumulation in various tissues of the test mussels indicated that Zn transferred from the gills, viscera and foot to the mantle and muscles might be one of the important characteristics of the Zn regulatory mechanism by leading to a narrow range of Zn concentration in the different tissues.

关键词: interaction     mussel     copper     zinc     clearance     distribution    

Identification and assessment of environmental burdens of Chinese copper production from a life cycle

Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 580-588 doi: 10.1007/s11783-013-0599-8

摘要: The environmental burdens of Chinese copper production have been identified and quantified in the context of typical technologies, materials supplies and environmental emissions by a life cycle approach. Primary and secondary copper production using copper ores and scraps, respectively, were analyzed in detail. The flash and bath smelting approaches and the recycling of copper scraps were selected as representative copper production processes. A quantitative analysis was also conducted to assess the influence of material transport distance in copper production. Life cycle assessment (LCA) results showed that resources depletion and human health contribute significantly to environmental burdens in Chinese copper production. In addition, the secondary copper production has dramatically lower environmental burdens than the primary production. There is no obvious distinction in overall environmental burdens in primary copper production by flash or bath smelting approach. However, resources depletion is lower and the damage to human health is higher for flash smelting approach. Ecosystem quality damage is slight for both approaches. Environmental burdens from the mining stage contribute most in all life cycle stages in primary copper production. In secondary copper production, the electrolytic refining stage dominates. Based on the life cycle assessment results, some suggestions for improving environmental performance were proposed to meet the sustainable development of Chinese copper industry.

关键词: copper production     environmental burden     life cycle assessment     refined copper    

迎接铜工业挑战——低成本处理硫化铜精矿途径的思考

朱祖泽

《中国工程科学》 2000年 第2卷 第2期   页码 87-90

摘要:

对过去10年来铜冶炼的技术进步和铜价格的变化作出的简要回顾指出,未来铜市场的竞争是取决于冶炼技术的生产成本的竞争。坚持自我研究开发和引进相结合才能保证我国铜工业健康稳定发展,并能应付国际竞争。评述了现在强氧化-PS转炉吹炼-火法精炼-电解流程的不足;分析了火湿法联合流程的可能性及依据;新的火湿法联合流程将有更强的竞争优势。

关键词: 未来铜工业     硫化铜精矿     低成本处理    

Microwave enhanced stabilization of copper in artificially contaminated soil

Hua ZHANG, Zhiliang ZHU, Noboru YOSHIKAWA

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 205-211 doi: 10.1007/s11783-010-0290-2

摘要: Microwave processing was used to stabilize copper ions in soil samples. Its effects on the stabilization efficiency were studied as a function of additive, microwave power, process time, and reaction atmosphere. The stabilization efficiency of the microwave process was evaluated based on the results of the toxicity characteristic leaching procedure (TCLP) test. The results showed that the optimal experimental condition contained a 700 W microwave power, 20 min process time and 3 iron wires as the additive, and that the highest stabilization efficiency level was more than 70%. In addition, the different reaction atmospheres showed no apparent effect on the stabilization efficiency of copper in the artificially contaminated soil. According to the result of the Tessier sequential extraction, the partial species of copper in the contaminated soil was deduced to transform from unstable species to stable states after the microwave process.

关键词: microwave     copper     stabilization    

Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 918-929 doi: 10.1007/s11705-023-2305-0

摘要: The casual discharge of dyes from industrial settings has seriously polluted global water systems. Owing to the abundance of biomass resources, preparing photocatalysts for photocatalytic degradation of dyes is significant; however, it still remains challenging. In this work, a cuprous oxide/copper oxide composite was interpenetrated onto carbon nanosheets of cellulose-based flexible carbon aerogels (Cu2O/CuO@CAx) via a simple freeze-drying-calcination method. The introduction of the carbon aerogel effectively prevents the aggregation of the cuprous oxide/copper oxide composite. In addition, Cu2O/CuO@CA0.2 has a larger specific surface area, stronger charge transfer capacity, and lower recombination rate of photogenerated carriers than copper oxide. Moreover, Cu2O/CuO@CA0.2 exhibited high photocatalytic activity in decomposing methylene blue, with a degradation rate reaching up to 99.09% in 60 min. The active oxidation species in the photocatalytic degradation process were systematically investigated by electron spin resonance characterization and poisoning experiments, among which singlet oxygen played a major role. In conclusion, this work provides an effective method for preparing photocatalysts using biomass resources in combination with different metal oxides. It also promotes the development of photocatalytic degradation of dyes.

关键词: carbon aerogel     photocatalysis     dye degradation     biomass     cuprous oxide/copper oxide    

标题 作者 时间 类型 操作

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

期刊论文

Utilization of alkali-activated copper slag as binder in concrete

期刊论文

Copper fractal growth during recycling from waste printed circuit boards by slurry electrolysis

期刊论文

Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis

Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen

期刊论文

A critical review on the recycling of copper and precious metals from waste printed circuit boards using

Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang

期刊论文

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang

期刊论文

Cu/Cr co-stabilization mechanisms in a simulated AlO-FeO-CrO-CuO waste system

期刊论文

Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb

Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU

期刊论文

Effect of fly ash and slag on concrete: Properties and emission analyses

Vivian W. Y. TAM, Khoa N. LE, Ana Catarina Jorge EVANGELISTA, Anthony BUTERA, Cuong N. N. TRAN, Ashraf TEARA

期刊论文

Performance assessment of Alccofine with silica fume, fly ash and slag for development of high strength

Shivang D. JAYSWAL; Mahesh MUNGULE

期刊论文

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

期刊论文

Identification and assessment of environmental burdens of Chinese copper production from a life cycle

Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG

期刊论文

迎接铜工业挑战——低成本处理硫化铜精矿途径的思考

朱祖泽

期刊论文

Microwave enhanced stabilization of copper in artificially contaminated soil

Hua ZHANG, Zhiliang ZHU, Noboru YOSHIKAWA

期刊论文

Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for

期刊论文